
Rethinking "Ovarian" Cancer...

Michael A Bookman MD

Chair, Gynecologic Cancer InterGroup (GCIG) Director, Gynecologic Oncology Therapeutics Kaiser Permanente Northern California San Francisco

Long Term Outcomes (US: Women)

Improvements in median PFS, OS, and QoL

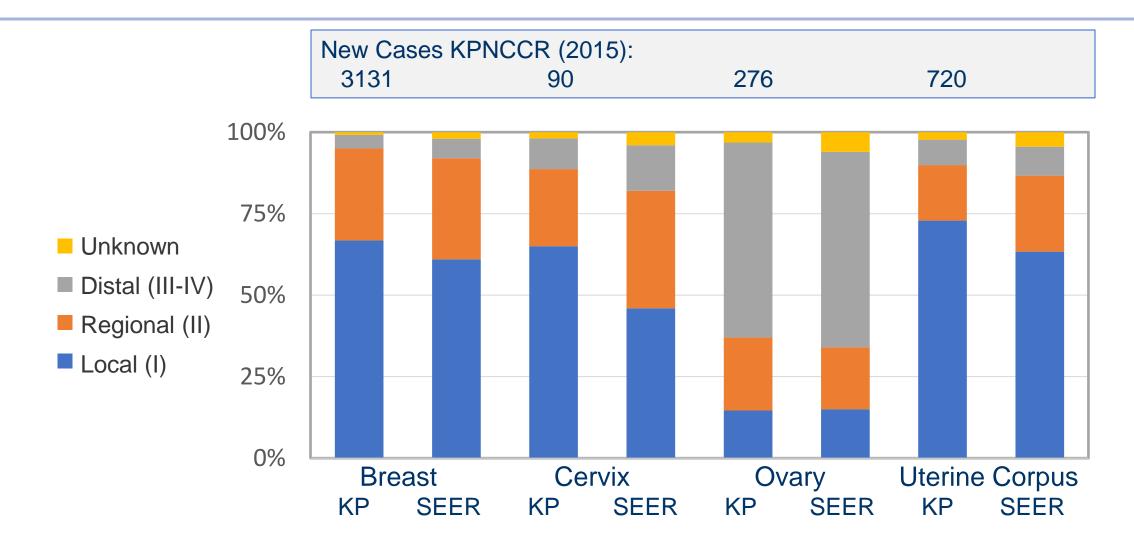
Benefits of chemotherapy and cytoreductive surgery appear maximized

Modest reduction in incidence and mortality from 2005 (Possibly related to ↑RR-BSO and ↓HRT)

No impact on overall casefatality ratio (or cure)

Impact of PARPi pending

Gourley C and Bookman MA. J Clin Oncol 2019; 37:2386-97



21st Annual Cancer Conference 15NOV2024

Cancer Statistics Center

American Cancer Society®

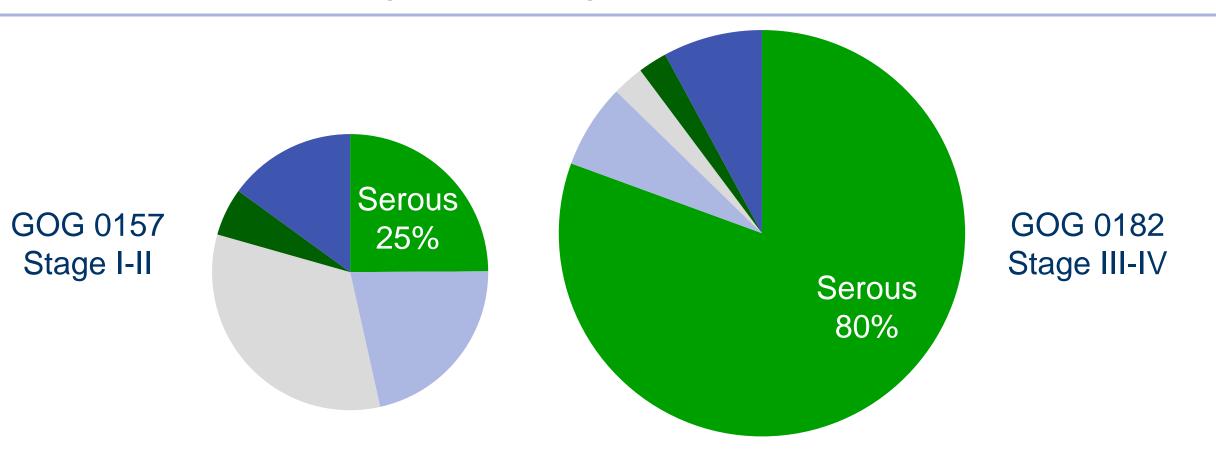
Stage at Diagnosis (NCAL and National)

KPNCCR 2006 - 2012

Stage at Diagnosis (NCAL and National)

KPNCCR 2006 - 2012

Epithelial Cancers Involving the Ovary


	HGSC	CCC	EC	MC	LGSC	CS	
Distribution: FIGO III-IV	15%	4%*	12%	2%	4%	3%	
Genetic Risk	BRCA1/2 HR	HNPCC	HNPCC	None known	None known	BRCA1/2 (minor)	
Other Risks	↓ Risk with OC, pregnancy	None known	↓ Risk with OC,↑ Risk with HRT	None known	None known	None known	
Precursors	STIC	Endometriosis	Endometriosis	MBT	SBT	HGSC HGEC	
Chemotherapy	Sensitive, then resistant	Resistant	Sensitive	Resistant	Resistant	Resistant	
Molecular Genetics	TP53(P53) BRCA1/2 PI3K HRD	PI3K ARID1A MMR-MSI	PTEN CTNNB1 POLE MMR-MSI FGFR	KRAS cErbB2(HER2)	BRAF KRAS NRAS	TP53(P53) cErbB2(HER2)	
Targets	PARP, Angiogenesis	Angiogenesis, Immune CPI	ER, PR, mTOR, Immune CPI	HER2	RAS/RAF-MEK Hormonal	HER2	

* CCC 30% in Asia

Epithelial Cancers Involving the Ovary

	HGSC		CCC	EC	MC	LGSC	CS		
Distribution: FIGO III-IV		75% 4%* 12% 2%		2%	4%	3%			
Genetic Risk	BF	 Distinct cancer subtypes defined by clinical, genetic, and molecular features, as well as site of origin and precursor lesions 							
Other Risks	↓R p	lown							
Precursors	•	 Individualized management decisions should be based on pathology, stage, and biology (may avoid over-treatment) 							
Chemotherapy	Ser •	 Platinum compounds remain the most active agents developed to date, limited by the near-universal emergence of platinum resistance 							
Molecular Genetics	T BR	Resistance to Natural Products and other agents is distinct from platinum resistance, with an impact on treatment planning [ER2]							
Targets		PARP, ogenesis	Angiogenesis, Immune CPI	ER, PR, mTOR, Immune CPI	HER2	RAS/RAF-MEK Hormonal	HER2		
						* CCC 30%	% in Asia		

Ovarian Histology by Stage

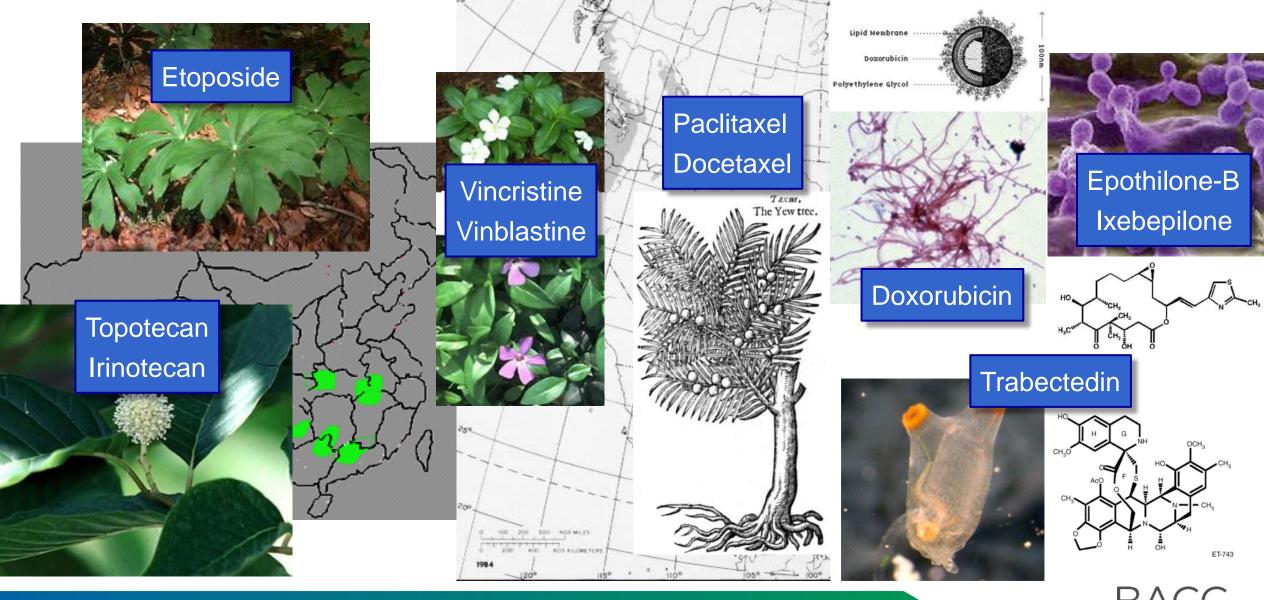
Serous Endometrioid Clear Cell Mucinous Mixed

Bell JG. Gynecol Oncol 2006;102:432-9

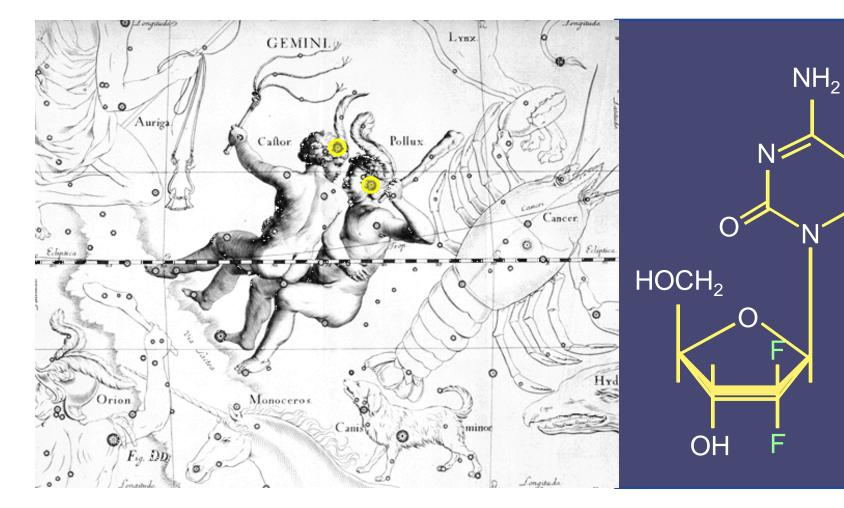
Bookman MA, et al. J Clin Oncol 2009;27:1419-25

Ovarian Cancer: True, False, or...

- Screening with Pap smears, CA125, pelvic exams, and endovaginal ultrasound will detect early-stage ovarian tumors and reduce mortality
- Women who use oral contraceptives experience a life-long reduction in risk of 40%
- Post-menopausal hormone replacement does not have an impact on risk
- Nulliparity (with or without infertility) is associated with an increased risk of ovarian cancer
- The majority of ovarian cancers are associated with inherited mutations in genes such as BRCA1/2



Ovarian Cancer: True, False, or...



The "Non-Platinums": All Natural Ingredients...

Imitating Nature (with a Twist)...

Gemcitabine (2'2'-difluorodeoxycytidine)

Targets Ribonucleotide Reductase (RR), Thymidylate Synthase (TS), and DNA Nucleotide pools, with incorporation of dFdCTP into DNA

Results in masked chain termination during DNA synthesis.

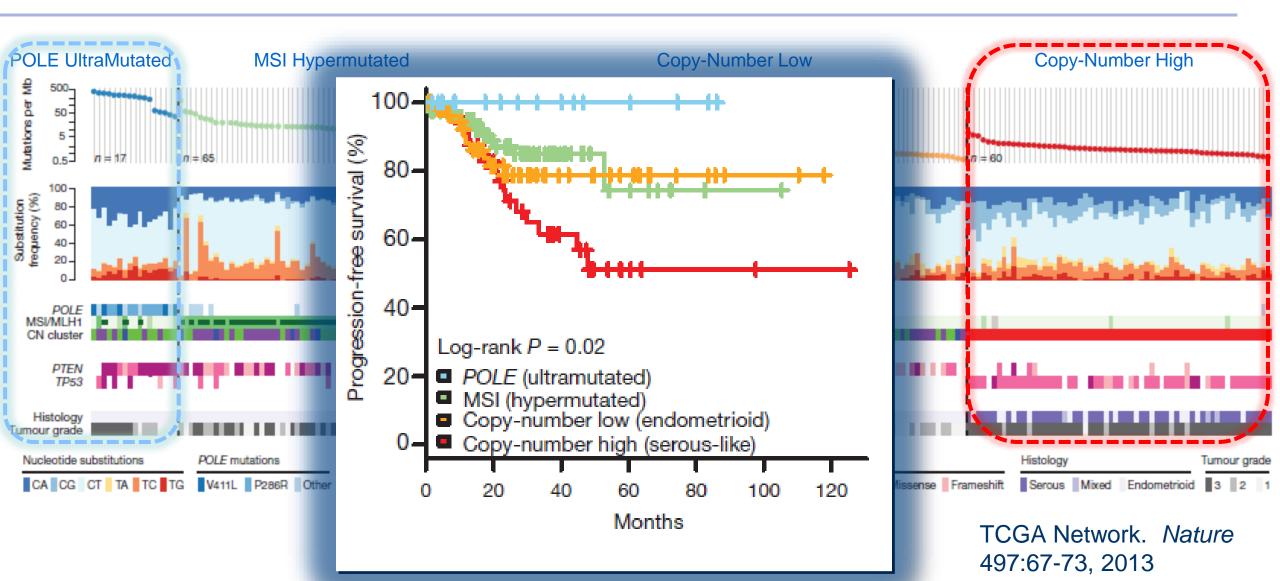
Uptake dependent on rate-saturable phosphorylation.

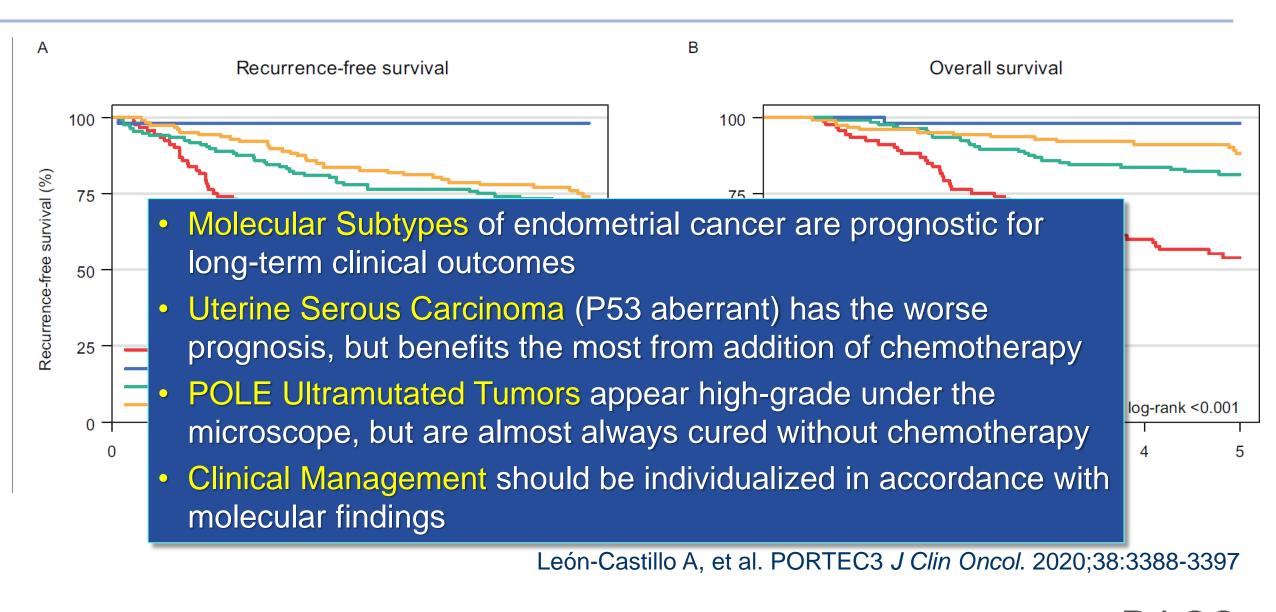
Mechanisms of resistance are largely specific to gemcitabine.

Reconstructing Cause and Effect...

Our long-standing assumptions have been challenged by ermerging clinical, pathologic, and molecular findings...

- When are mutations "cancer-causing"?
- Is it real? Understanding discordance between test results
- Managing tumors that INVOLVE the ovary vs ORIGINATE within the ovary
- What markers are "targetable"?
- How do we manage drug resistance?


Incheon, South Korea NOV2023

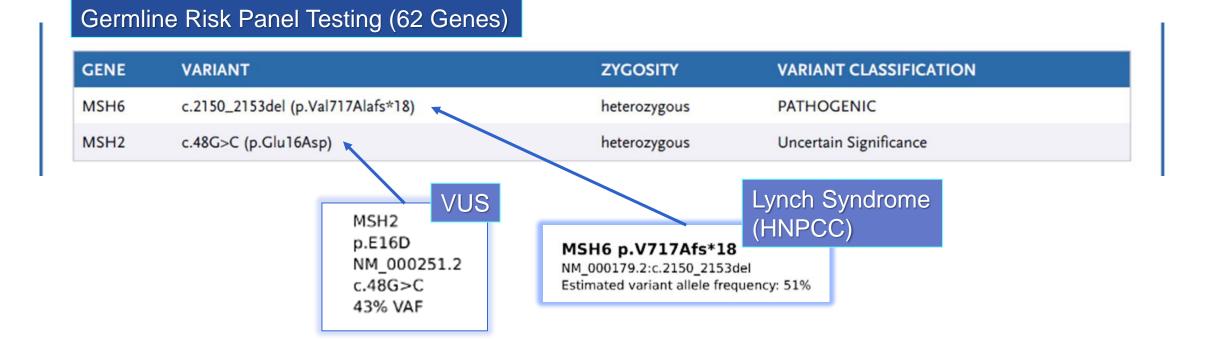


Targeting Endometrial Cancer: TCGA

PORTEC3: Molecular Subtypes

Dual Molecular Classifiers: Lynch Syndrome and P53

69 Y old woman, abnormal bleeding


- CT: Widened endometrial stripe (1.7 cm) with peripheral enhancement
- Endometrial Bx: High-Grade Serous Carcinoma (P53 aberrant), loss of MSH6 on IHC (MMRd)
- Staging: Laparoscopic TAH-BSO, Omentectomy, PLND. Endometrioid adenocarcinoma, FIGO Grade 2 (P53 aberrant), Atypia without definitive serous histology, pT1a pN0 (FIGO IA), 45% MMI, focal LVSI

Endometrial Cancer Tumor content 80% (molecularly informed) Cancer Type 30 mm² Surface area Subtype Uterine Endometrioid Carcinoma PIK3R1 p.S565R RB1 p.R358* FBXW7 p.R465C Endometrioid NM 000321.2:c.1072C>T NM_033632.3:c.1393C>T NM_181523.2:c.1695C>A **Oncogenic Driver** Estimated variant allele frequency: 72% Estimated variant allele frequency: 55% Estimated variant allele frequency: 40% SMARCA4 p.R381* PPP2R1A p.R182W FGFR1 amplification Tumor Suppressor NM 001128849.1:c.1141C>T Estimated copy number: 6 NM 014225.5:c.544C>T Estimated variant allele frequency: 19% Confidence interval: 5.4 - 7.4 Estimated variant allele frequency: 43% Uterine Serous Ca TP53 p.R273H MSH6 p.V717Afs*18 **PTEN p.G282*** NM_000546.5:c.818G>A NM 000179.2:c.2150 2153del NM 000314.4:c.844G>T dMMR, Lynch Estimated variant allele frequency: 74% Estimated variant allele frequency: 51% Estimated variant allele frequency: 36% PIK3CA p.R88Q **PTEN p.R233* Biomarker Findings** NM 006218.2:c.263G>A NM 000314.4:c.697C>T Estimated variant allele frequency: 41% Estimated variant allele frequency: 44% MSS Microsatellite Stable

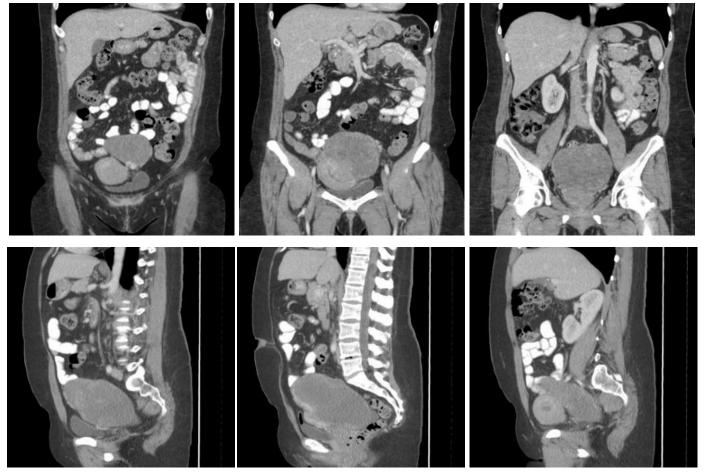
Dual Molecular Classifiers: Lynch Syndrome and P53

69 Y old woman, abnormal bleeding

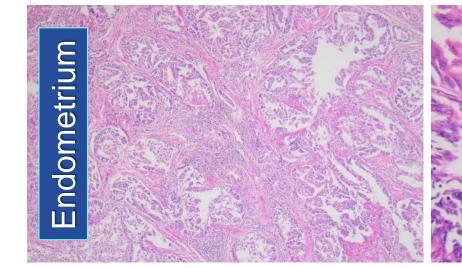
- CT: Widened endometrial stripe (1.7 cm) with peripheral enhancement
- Endometrial Bx: High-Grade Serous Carcinoma (P53 aberrant), loss of MSH6 on IHC (MMRd)
- Staging: Laparoscopic TAH-BSO, Omentectomy, PLND. Endometrioid adenocarcinoma, FIGO Grade 2 (P53 aberrant), Atypia without definitive serous histology, pT1a pN0 (FIGO IA), 45% MMI, focal LVSI

Dual Molecular Classifiers: Lynch Syndrome and P53

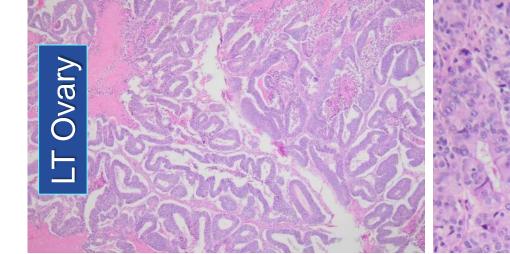
69 Y old woman, abnormal bleeding


- CT: Widened endometrial stripe (1.7 cm) with peripheral enhancement
- Endometrial Bx: High-Grade Serous Carcinoma (P53 aberrant), loss of MSH6 on IHC (MMRd)
- Staging: Laparoscopic TAH-BSO, Omentectomy, PLND. Endometrioid adenocarcinoma, FIGO Grade 2 (P53 aberrant), Atypia without definitive serous histology, pT1a pN0 (FIGO IA), 45% MMI, focal LVSI

Your Recommendation Post-Surgery:


- A. Observation/Surveillance without additional therapy
- B. Chemotherapy
- C. Immunotherapy
- D. Radiation Therapy (HDR-VBT)
- Lynch Syndrome (HNPCC, inherited t cancer risk)
- Tumor MMRd, but without MSI (second intact copy of *MSH6*)
- *TP53*mut appears to be the dominant molecular finding within this cancer
- Received HDR-VBT and chemotherapy without recurrence

- 42 year-old with abnormal menstrual bleeding. Endometrial Bx with EIN, complex hyperplasia, and atypia
- No improvement with megestrol
- CT and Pelvic US with complex 12 cm LT adnexal mass and irregular endometrial thickening. CA125 = 502
- Hysteroscopy: Endometrioid AdenoCa, with secretory, mucinous, and squamous metaplasia, FIGO Grade 1-2, LVSI+, ER+, P53wt, MMRp.

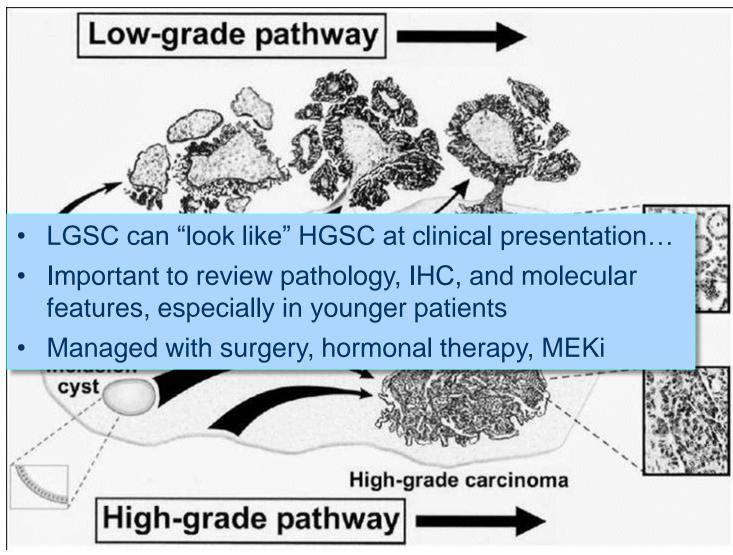

Laparoscopic TAH-BSO, Omentectomy, Biopsies. No macroscopic residual.

- 5 cm uterine mass, Endometrioid AdenoCa, Grade 2, squamous metaplasia, 70% MMI, LVSI+
- LT Ovary 12 cm Endometrioid AdenoCa
- Endometrioisis in sigmoid nodule

Endometrial Stage pT3a, pNx/cN0, cM0 (FIGO III-A)

Photomicrographs: Maria Serrano KP-SFO

NGS LT Ovary (Tum	or Content 90%)	Biomarker Findings	Addition	al Mutations I	dentified fron	n TMB Analysi	5	
ATM p.R1618* NM_000051.3:c.4852C>T Estimated variant allele frequency: 44%	POLE p.P286R NM_006231.3:c.857C>G Estimated variant allele frequency: 47%	MSS MS Stable Microsatellite Stable	ADGRB3 p.D717Y ARID1A p.R1989*	ADGRB3 p.R1400I ATM p.I1035L	ADGRB3 p.T9425 BCL10 p.L24V	AKAP9 p.L283V BLM p.S778F	APC p.R1096* BRIP1 p.K1232N	ARID1A p.D1785E BUB1B p.E507*
ATM p.R250* NM_000051.3:c.748C>T Estimated variant allele frequency: 45%	PTEN p.R130Q NM_000314.4:c.389G>A Estimated variant allele frequency: 89%	TMB High TMB - High Mutations per MB: 147 Confidence interval: 126 - 171	CDH11 p.D672Y DCC p.T610A	CDH2 p.L855P DPYD p.S500Y	CRKL p.Y105* DST p.E778*	СSMD3 p.D3250E DST p.P4283H	CYP2C19 p.S23N DST p.R1269*	DCC p.E1159* EPHA3 p.R241K
BRCA1 p.M1? NM_007294.3:c.3G>T Estimated variant allele frequency: 49%	TP53 p.F113L NM_000546.5:c.339C>A Estimated variant allele frequency: 46%		FN1 p.I1994M JAK1	FOXO1 p.S345F JAK1	GUCY1A2 p.R700M JAK2	HLF p.S258L KAT6A	HSP90AB1 p.E372D KDR	JAK1 p.E913A KMT2A
BRCA2 p.E2129* NM_000059.3:c.6385G>T Estimated variant allele frequency: 43%	TP53 p.R213* NM_000546.5:c.637C>T Estimated variant allele frequency: 46%	PD-L1 - Low RNA expression score: 0	p.F5755 LRP1B p.D1741E MSH6	p.L891P LRP1B p.E4584* MTOR	р.К217N LTK p.T757I MYH11	p.R688C MAGI1 p.R1138* MYH11	p.G95* MCL1 p.S285R MYH11	p.R1716W MSH2 p.M4851 NFKB1
MSH6 p.E544* NM_000179.2:c.1630G>T Estimated variant allele frequency: 43%	221214		p.S256G NSD1 p.L812F	p.E804K NTRK3 p.E276D	p.D619N NUMA1 p.E294*	p.E1109V PIK3CG p.E1073K	p.E512* PKHD1 p.E567K	p.F412C PKHD1 p.F955L
PIK3CA p.E110del NM_006218.2:c.328_330del Estimated variant allele frequency: 30%			PKHD1 p.G1679* PRKDC p.S1667*	PKHD1 p.S3017P PTEN p.R130Q	POT1 p.H437N PTPRD p.F14L	PPARG p.L4211 PTPRD p.I562L	PPARG p.N440S RET p.F31L	PRDM1 p.L760M RNF213 p.K399T
TMB High (pMMRp (MS)	point mutations acr Stable)	n POLE ultramutated to oss entire genome) ns (non-pathogenic)	umor	ROS1 p.E738D TAF1L p.E547D TP53 p.F113L	SAMD9 p.E1356* TAF1L p.K1358T TRIM24 p.S422F	SEPT9 p.D503G TET2 p.L552I TSHR p.R109W	SETD2 p.S2327I TGM7 p.K207N WRN p.E379*	SMARCA4 p.E780G TIMP3 p.K49N WRN p.E399K


42 year-old, CT and Pelvic US with complex 12 cm LT adnexal mass and irregular endometrial thickening. CA125 = 502. Endometrioid adenocarcinoma with secretory, mucinous, and squamous metaplasia FIGO Grade 1-2, EIN, 70% MMI, LVSI+. IHC ER+, P53wt, pMMR. Stage pT3a, pNx/cN0, cM0 (FIGO III-A) POLE Hypermutated (MS Stable, TMB High)

Your Recommendation Post-Surgery:

- A. Observation/Surveillance without additional therapy
- B. Chemotherapy
- C. Immunotherapy
- D. Radiation Therapy (HDR-VBT)
- E. Radiation Therapy (Pelvic EBRT)
- F. Chemotherapy followed by Radiation Therapy (Pelvic EBRT)
- Endometrial cancer involving LT ovary, not "Synchronous Primaries"
- *POLE*mut ultramutated state, with excellent prognosis (based on PORTEC3)
- Received HDR-VBT without chemotherapy, NED after 5 years

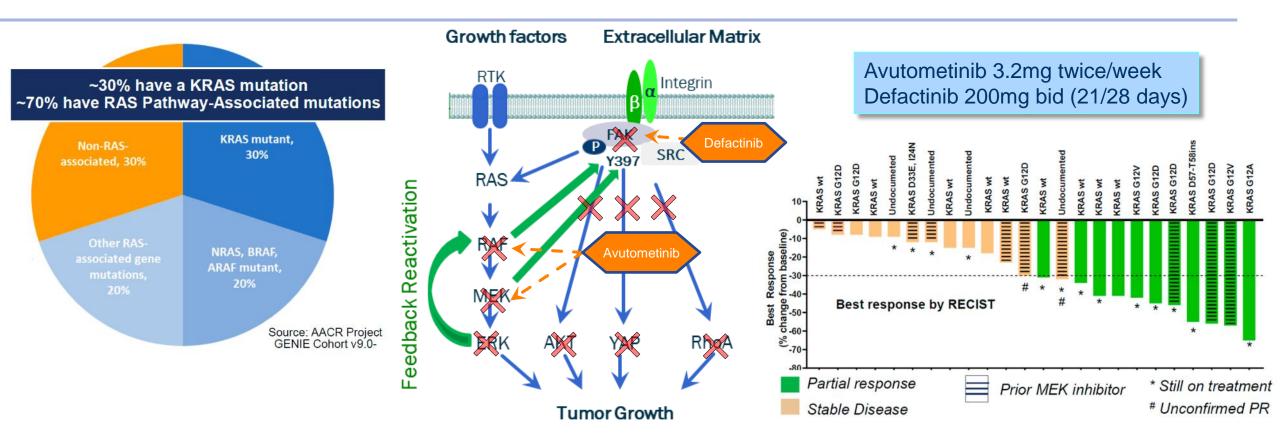
LGSC vs HGSC: Molecular and Clinical Biology

Modified from: Singer et al., Am J Surg Pathol 29:218-24, 2005

- Mutations in BRAF, KRAS, NRAF
- Downstream MEK activation
- Not Associated with High-Risk Families
- Younger age at diagnosis (pre-MP)
- ER+/PR+, low mitotic rate
- Intact p53 and DNA Repair
- Genomic Stability with Low TMB
- Low-Elevated or Normal CA125
- 80% early-stage (FIGO I-II)
- Uniform aberrant p53 (TP53mut)
- Frequent loss 17q21 (BRCA1), 13q12 (BRCA2), 13q14 (RB1)
- Associated with High-Risk Families
- Older age at diagnosis (post-MP)
- Defective DNA Repair (HRD)
- Genomic Instability but with Low TMB
- ↑CA125
- 80% advanced-stage (FIGO III-IV)

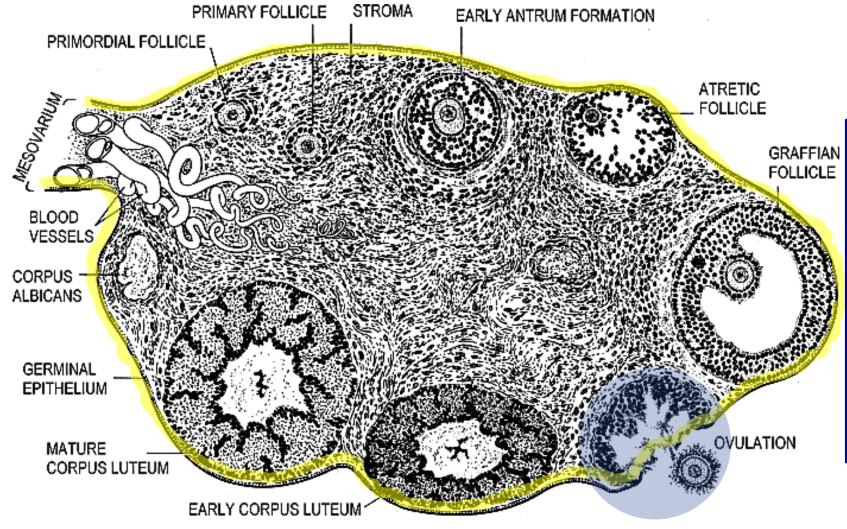
Platinum-Refractory High-Grade Serous Cancer

75 yo with new onset AFib. CT: Bilateral complex adnexal masses, perihepatic implants, splenic lesion, RT pleural effusion, RT Ax LN, LT breast mass. CA125 = 1,698. Breast and Ax LN Bx: HGSC, IHC P53 aberrant (diffuse expression), IHC+ for PAX-8, WT-1, ER. FIGO IVB


Germline Risk Panel: No pathogenic alterations

- NACT with Carboplatin and Paclitaxel x3 cycles
- No change in CA125, stable disease on CT imaging
- Molecular Profile: *KRAS*mut p.G12D, *TP53*wt, MS Stable
- Review of Breast and Ax LN Bx: mild-moderate atypia, low mitotic rate, P16 (-), P53 wild-type (original P53 overstained)
- Diagnosis changed from HGSC to LGSC
- Switched to hormonal therapy after cytoreductive surgery
- Residual metastatic disease stable for 3+ years on letrozole

Ovarian LGSC: Combined RAF/MEKi and FAKi

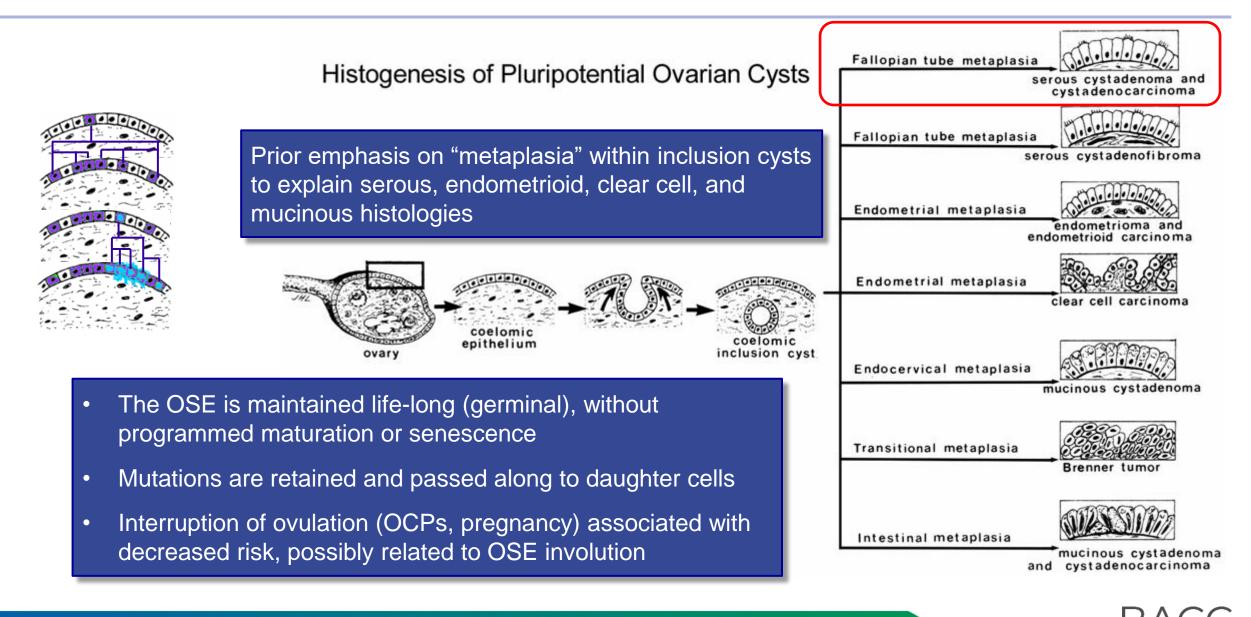


- The RAS/RAF→MEK/ERK intracellular signaling pathway is the dominant driver in LGSC
- Coordinated targeting (RAF/MEK and FAK) delays emergence of resistance
- Validation in RAMP 201 (GOG 3052, ENGOT-ov60, VS-6766-201) Avutometinib +/- Defactinib

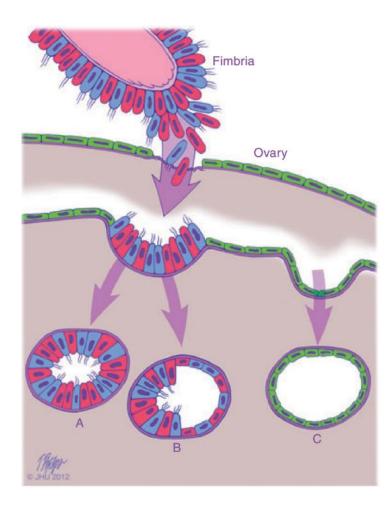
Banerjee S, et al. ESMO 2021 Abstract 799

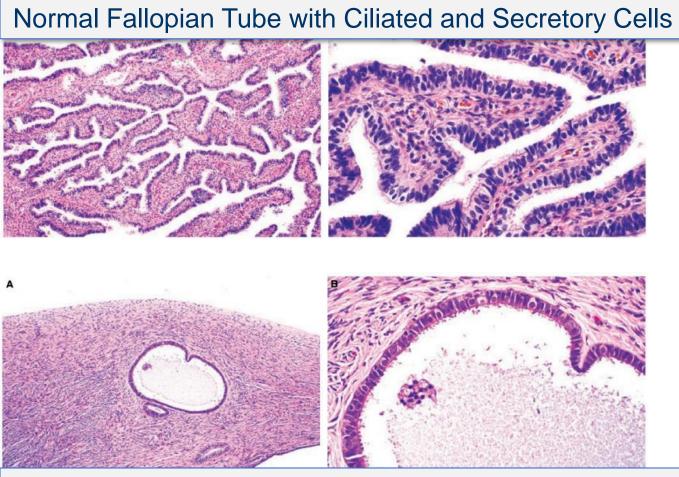
Ovarian Biology

Carcinomas frequently involve the ovarian surface (Müllerian) epithelium


Ovulation facilitates implantation, cyst formation and transformation (cytokines, angiogenesis, wound healing)

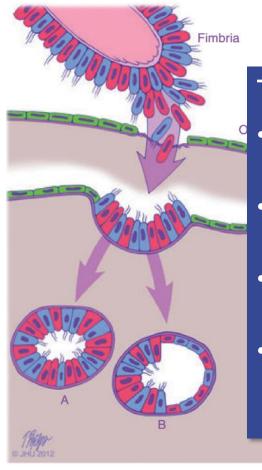
The ovary represents a "favored site" for tumor growth


Modified from Yen and Jaffe, Reproductive Endocrinology, 1986



Historical Perspective: Ovarian Surface Epithelium

Recognizing the Diverse Origins of "Ovarian" Cancer



Normal Ovary with a "Fallopian" Inclusion Cyst

Vang R, Shih I-M, Kurman RJ. *Histopathology* 2013; 62:44-58

Recognizing the Diverse Origins of "Ovarian" Cancer

Normal Fallopian Tube with Ciliated and Secretory Cells

The ovary is a favored site of tumor implantation and growth

- Many "Ovarian" SEROUS tumors can be attributed to implantation of transformed fallopian tubal epithelium
- Many "Ovarian" ENDOMETRIOID and CLEAR CELL tumors can be attributed to endometriosis and/or endometrial cancer
- Over 50% of "Ovarian" metastatic MUCINOUS tumors are associated with a gastrointestinal primary lesion
- In ENDOMETRIAL CANCER, the presence of an isolated synchronous OVARIAN lesion does not adversely impact prognosis, supporting de-escalation of post-operative therapy

Normal Ovary with a "Fallopian" Inclusion Cyst

Vang R, Shih I-M, Kurman RJ. Histopathology 2013; 62:44-58

BACC Bay Area Cancer Connections

Endometrioid Ovarian Cancer

51 yo with abdominal discomfort. CT: 15 cm complex cystic mass, small LT PA and AortoCaval LN. No ascites, effusion, hydronephrosis or bowel obstruction. CA125 = 30

Surgery: Primary TAH-BSO, P-PA-LND, Omentectomy. Enlarged fibroid uterus and LT ovarian mass with matted pelvic LN. No gross residual.

Pathology: RT ovary 10.2 cm Grade 3 Endometrioid AdenoCa surface (+), Uterine serosa (+) with myometrial invasion. LT ovarian endometriosis. Omentum and LN (-). Mesothelial inflammation-endometriosis.

IHC P53wt, ER+ (focal), PAX8+, Stage pT2a, pN0 (FIGO IIA)

Your Recommendation:

- A. Observation
- B. Carboplatin and Paclitaxel x3 cycles
- C. Carboplatin and Paclitaxel x6 cycles
- D. Whole pelvic EBRT
- E. Carboplatin and paclitaxel followed by whole pelvic EBRT

PA ion.

Endometrioid Ovarian Cancer

51 yo with abdominal discomfort. CT: 15 cm complex cystic mass, small LT PA and AortoCaval LN. No ascites, effusion, hydronephrosis or bowel obstruction. CA125 = 30

Surgery: Primary TAH-BSO, P-PA-LND, Omentectomy. Enlarged fibroid uterus and LT ovarian mass with matted pelvic LN. No gross residual.

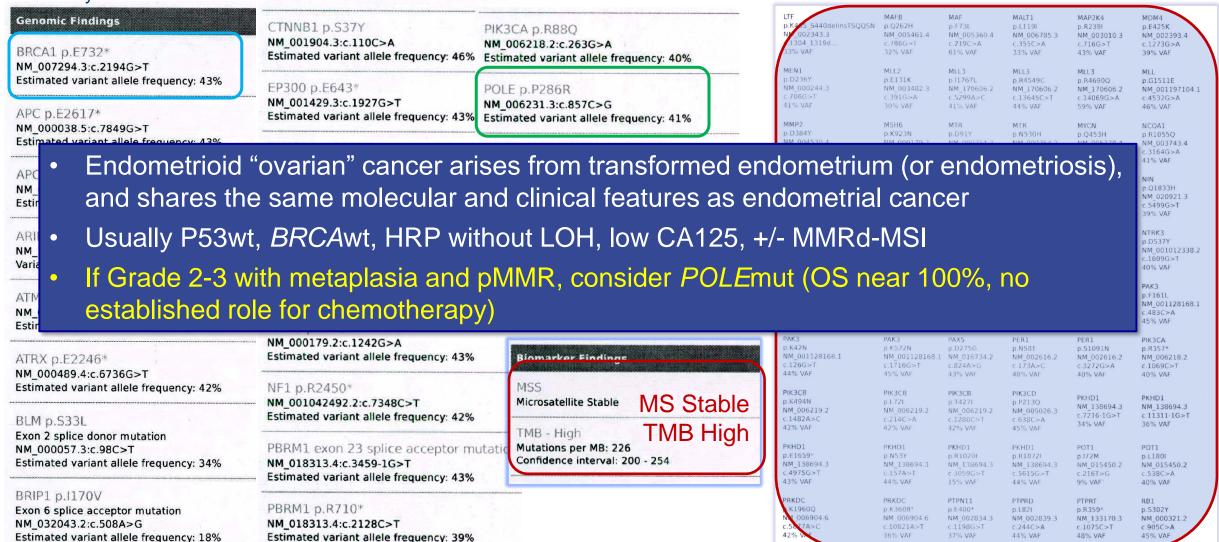
Pathology: RT ovary 10.2 cm Grade 3 Endometrioid AdenoCa surface (+), Uterine serosa (+) with myometrial invasion. LT ovarian endometriosis. Omentum and LN (-). Mesothelial inflammation-endometriosis.

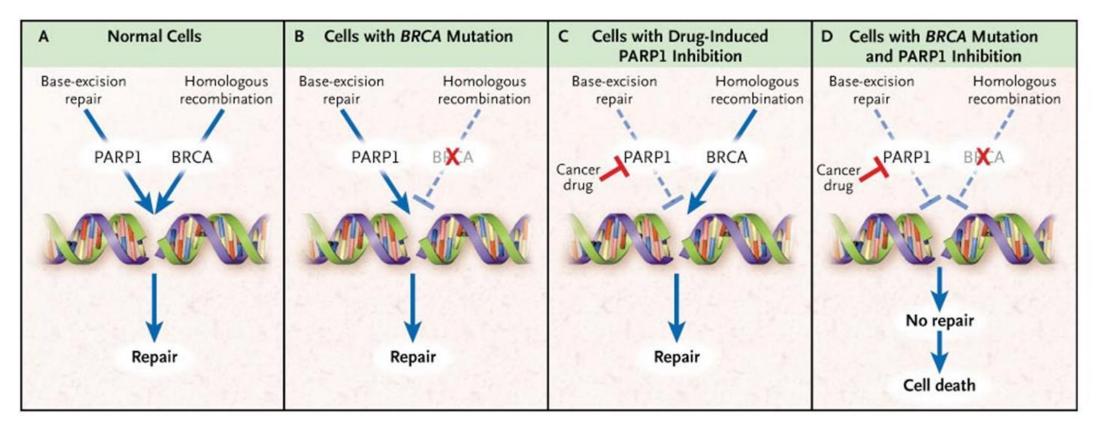
IHC P53wt, ER+ (focal), PAX8+, Stage pT2a, pN0 (FIGO IIA)

- Carboplatin and Paclitaxel x6 cycles → clinical CR
- Germline cancer risk panel (34 genes) without pathogenic alterations

Your Recommendation Post-Chemotherapy:

- A. Observation/Surveillance without additional therapy
- B. Maintenance PARPi if HRD(+)
- C. Maintenance PARPi regardless of testing
- D. Tumor molecular profile (NGS, MSI, TMB)

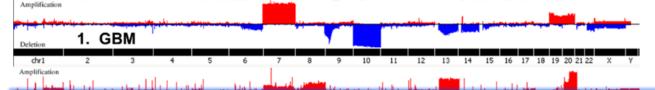



Endometrioid Ovarian Cancer: Molecular Profile

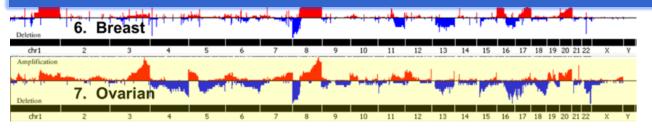
RT Ovary 80% Tumor Content

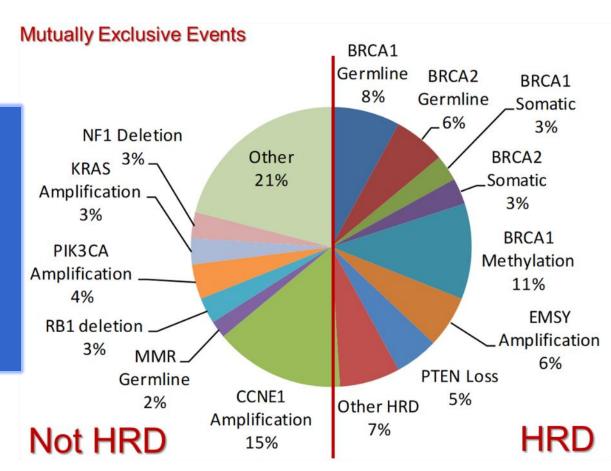
PARP Inhibition, HRD, Synthetic Lethality

Mechanism of Cell Death from Synthetic Lethality, as Induced by Inhibition of Poly(Adenosine Diphosphate [ADP]–Ribose) Polymerase 1 (PARP1).



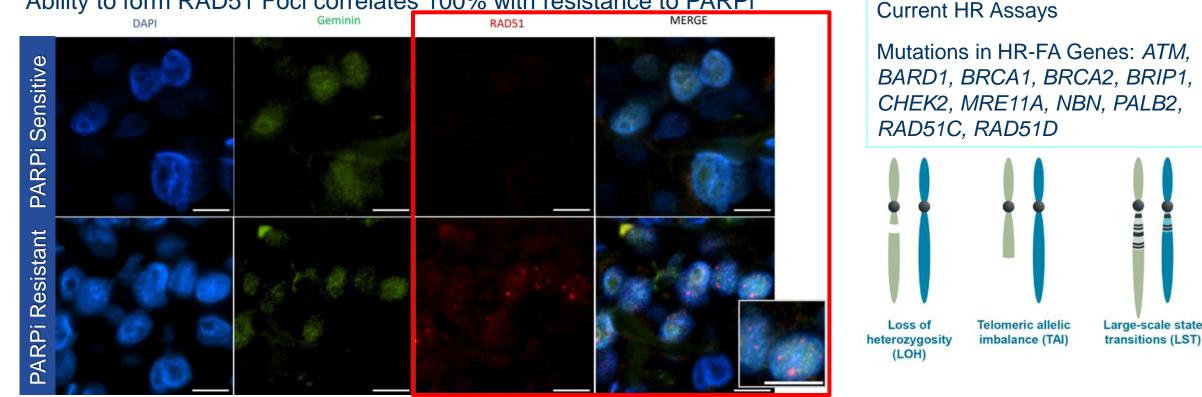
Iglehart JD, Silver DP. N Engl J Med 2009; 361:189-91





Large-Scale Genomic Diversity

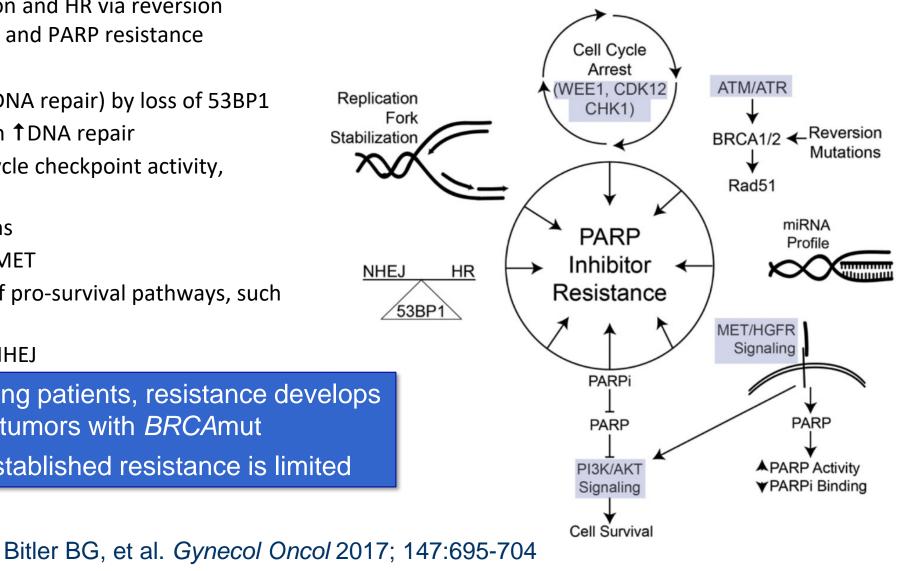
- HGSC characterized by *TP53*mut and Homologous Recombination Deficiency (HRD), with mutations in *BRCA1/2* and related genes
- HRD contributes to genomic diversity with large-scale amplifications, deletions, re-arrangements, and Loss of Heterozygosity (LOH)
- HRD is <u>not</u> associated with hypermutation (dMMR or MSI) or increased TMB (usually <10 Mut/MB)



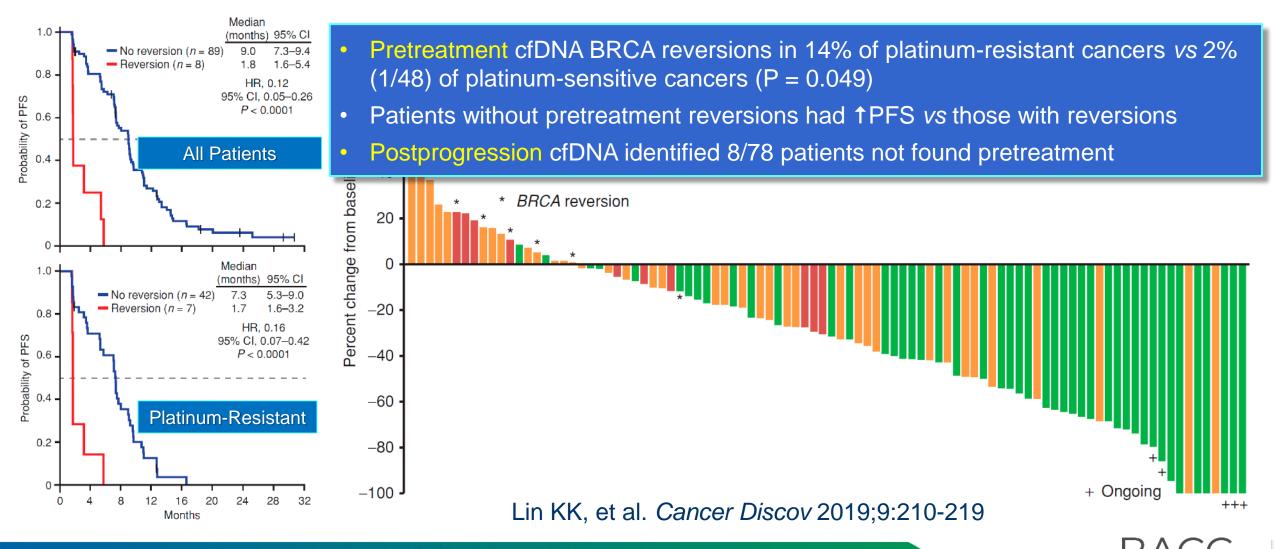
Measurement of HRD: LOH, Mutations, and RAD51C

- Current assays identify deleterious mutations and/or provide an overall HR "score"
- Assays rely on fixed genomic changes, not real-time functional HR capacity
- No correlation of HR Score with development of PARPi resistance

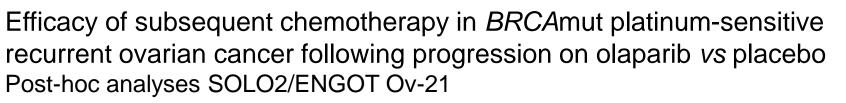
RAD51 Focus-Forming Assay using human PDX exposed to PARPi *in vivo* Ability to form RAD51 Foci correlates 100% with resistance to PARPi

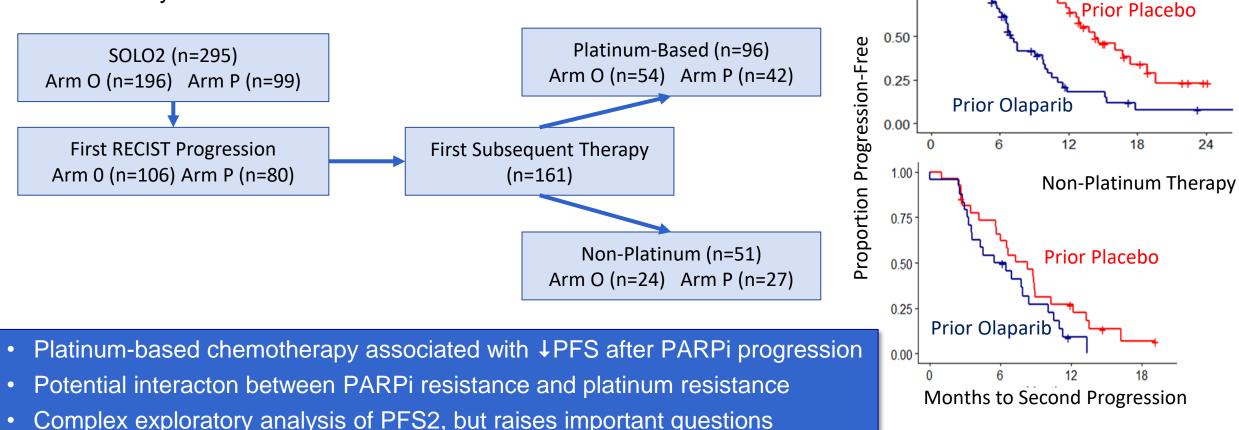


Castroviejo-Bermejo M, et al. *EMBO Mol Med* 2018; 10:e9172


PARPi Resistance: An Emerging Problem

- Restoration of BRCA1/2 function and HR via reversion • mutations, leading to platinum and PARP resistance
- Clonal selection without LOH •
- ↑HR and ↓NHEJ (error-prone DNA repair) by loss of 53BP1
- Stabilized replication forks with **†**DNA repair •
- [†]Damage detection and cell cycle checkpoint activity, allowing for DNA repair
- [†]Drug efflux via p-glycoproteins •
- Phosphorylation of PARP1 via MET .
- Compensatory up-regulation of pro-survival pathways, such . as PI3K/AKT
- miRNA mediated decrease in NHEJ
- In the majority of responding patients, resistance develops • within one year, including tumors with BRCAmut
- The ability to overcome established resistance is limited •




ARIEL2: BRCA Reversion Mutations

Open-label single-agent Rucaparib in patients with recurrent ovarian cancer

PARPi Resistance and Platinum Resistance...

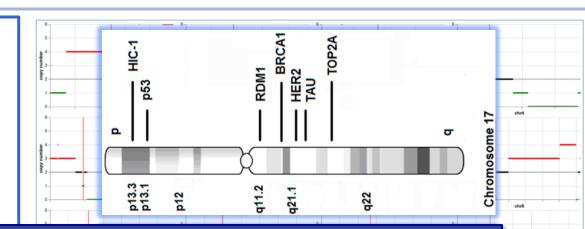
Frennel JS, et al. ESMO 2020

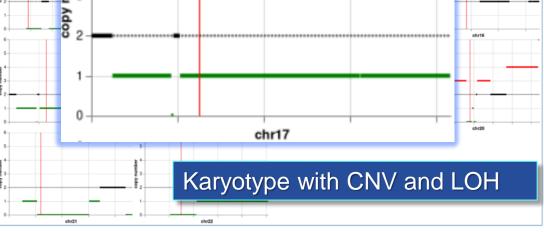
1.00

0.75

Platinum-Based Therapy

LG Endometrioid Ovarian Cancer with gBRCA1mut


47 yo with endometriosis and a 6.2 cm exophytic LT ovarian mass extending into the cul-de-sac with characteristic frond-like enhancing papillary projections suggestive of borderline tumor. CA125 = 24


Primary Surgery: FIGO Grade I endometrioid cancer, bilateral ovarian surfaces, cul-de-sac, appendix serosa (pT3b, FIGO IIIB), MMRp, P53wt, P16+, FR+

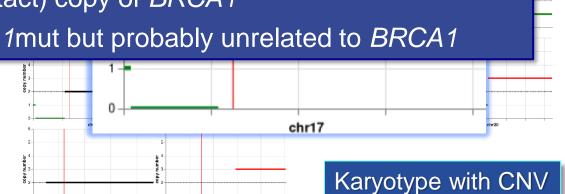
- BRCA1mut usually associated with HGSC or Grade 3 EC and aberrant P53
- Example of a low-grade tumor with a pathogenic gBRCA1mut and P53wt (TP53 non-mut)
- Presence of LOH (including single copy of *BRCA1*) supports PARPi maintenance High (48%).

Your Recommendation:

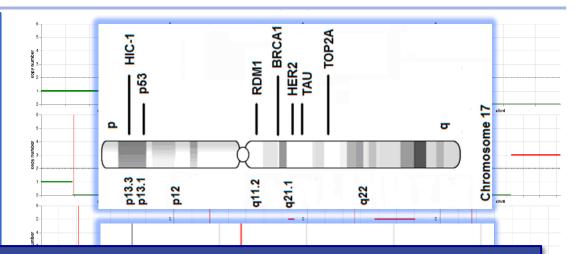
- A. PARPi maintenance
- B. Hormonal Therapy (AI)
- C. Observation

HGSC with gBRCA1mut (without HRD-LOH)

59 yo with HGSC of ovarian or uterine origin involving descending colon, omentum, and mesentery without ascites. P53 equivocal (suspected null). CA125 = 52. Referred for NACT.


NGS: TP53 p.E224= (VAF 25%). MS Stable, TMB Low (3 Mut/MB), HRD-LOH Low (32% with threshold 46%).

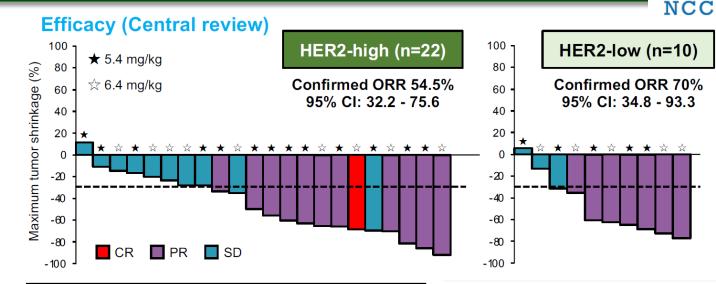
Germline: Pathogenic variant BRCA1, del exons 1-2 (not


- Pathogenic gBRCA1mut detected on germline testing but not reported on tumor NGS
- Karyotype with deletion at *TP53* locus (aberrant null P53)
- Absence of HRD-LOH most likely due to second (intact) copy of BRCA1
- Example of HGSC arising in the setting of a gBRCA1mut but probably unrelated to BRCA1

Your Recommendation:

- A. NACT+ICS → PARPi maintenance
- B. NACT+ICS without maintenance

Uterine Carcinosarcoma: Trastuzumab Deruxtecan

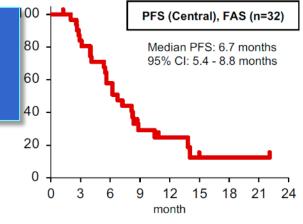

Efficacy and safety of trastuzumab deruxtecan in HER2-expressing uterine carcinosarcoma (STATICE TRIAL, NCCH1615): A MULTICENTER, PHASE 2 CLINICAL TRIAL

Background:

- ErbB2 (HER2) amplification in 14–20% of UCS
- HER2 IHC score 3+ ranges from 20 to 50%
- Trastuzumab deruxtecan (T-DXd) is a HER2targeted antibody-drug conjugate with potent topoisomerase I inhibitor payload

Eligibility:

- Unresectable UCS, progression post-chemotherapy
- HER2-positive IHC score ≥ 1+
- ECOG PS 0,1 and RECIST measurable



(n=32) (%)

Phase II ORR and PFS with T-DXd exceeds historical data with all other agents

- ErbB2 gene amplification or high-level IHC not required for clinical activity
- Attention to the risk of pneumonitis from T-DXd

1 0511140	5	(20)	Fatigue	3 - 4	2	(6.1)
Prior regimens 1	17	(53.1)	Pneumonitis	1	4	(12.1)
2	9	(28.1)		2	4	(12.1)
≥3	6	(18.8)		3	1	(3.0)

BACC Bay Area Cancer Connection

21st Annual Cancer Conference 15NOV2024

Hasegawa K, et al. ESMO 2021 Abstract 813P

Progressive Platinum-Resistant HGSC

58 yo with RT ovarian HGSC FIGO IVB, 20 cm adnexal mass, ascites, RT pleural effusion. cardiopulmonary adenopathy. CA125 = 1295

Primary optimal MACROscopic cytoreduction

Carboplatin-Paclitaxel x6 \rightarrow PR (residual disease)

NGS: Ovary (70% tumor content), *TP53* p.C176W (VAF 70%), MS Stable, TMB Low, LOH+ (HRD)

PARPi + Bevacizumab maintenance x4 months → PD

↑RT Effusion → Tunneled Pleural Catheter

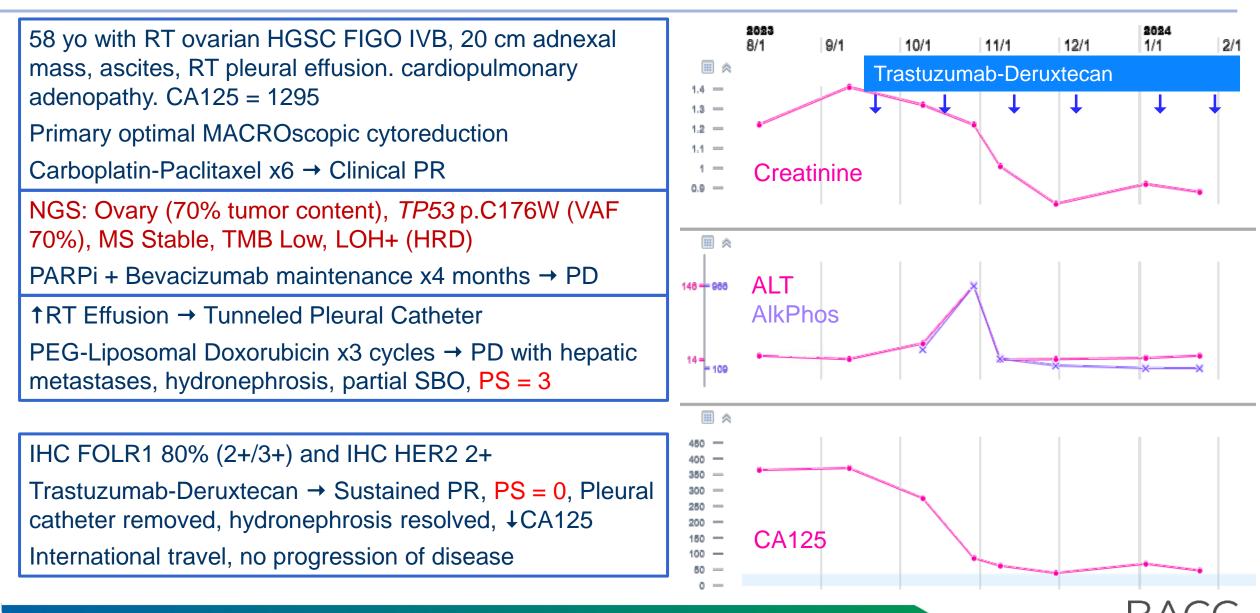
PEG-Liposomal Doxorubicin x3 cycles \rightarrow PD with hepatic metastases, hydronephrosis, partial SBO, PS = 3

Your Recommendation:

- A. Additional non-platinum chemotherapy
- B. Supportive care, transition to hospice
- C. Lenvatinib + Pembrolizumab
- D. Evaluate for ADC (FOLR1 and HER2)


21st Annual Cancer Conference 15NOV2024

Initial Presentation (FIGO IVB)


Progression Post-PARPi + Bevacizumab

Progressive Platinum-Resistant HGSC

Summary and Opportunities for Collaboration

- Treatment is increasingly defined by molecular subtypes and tumor biology
- Many "ovarian" cancers arise from extra-ovarian sites. The ovary is a favored site for implantation, due to cyst formation, angiogenesis, hormones, and other factors. "Synchronous" endometrial and ovarian tumors are monoclonal maligancies.
- Screening tests (IHC MMR and P53) can be discordant with NGS in a proportion of tumors, and it is important to distinguish "risk factors" (such as Lynch Syndrome) from tumor-causing events
- "Double Classifiers" merit careful evaluation to determine the primary molecular driver, including pathogenic mutations in BRCA1/2, which may not be cancer-causing or PARPi sensitive, without confirmation of HRD-LOH
- Hypermutated states (MSI and POLEmut), as well as HRD-LOH, are distinct at a molecular level, but secondary mutations can make it difficult to indintify the primary molecular driver
- Availability of functional HR assays (RAD51 focus-forming) and detection of BRCA1/2 revertant clones could identify tumors that are PARPi resistant
- Single-agent immune checkpoint inhibitors (anti-PD1 or PD-L1) are not effective in HGSC
- The emergence of antibody-drug conjugates has provided a valuable treatment strategy, but each one is different (target, linker, payload)

